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Abstract A dynamic gas-liquid transfer model without chemical reaction based on
unsteady film theory is considered. In this case, the mathematical model presented for
gas-liquid mass-transfer processes is based on mass balances of the transferred sub-
stance in both phases. The identificability property of this model is studied in order to
confirm the possible identifiable parameters of the model from a given set of exper-
imental data. For that, a different modeled of the system is given. A procedure for
the identification is proposed. On the other hand, the aim of this work is to solve the
quadratic optimal control problem, using an explicit representation of the model. The
problem includes some results on controllability, observability and stability criteria
and the relation between these properties and the parameters of the model. Using the
optimal control problem we study the stability of the system and show how the choice
of the weighting matrices can improve the behavior of the system but with an increase
of the energy control cost.
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1 Introduction

Batch processing is having increasingly importance in chemical and biochemical appli-
cations. Mathematical models are used to simulate the behavior of these processes.
These models can be constructed in different ways and differ greatly in complexity but
they have in common that they can be used to predict the behavior of the initial system.
Usually, the model is constructed using some of the properties of a system by tinkering
with adjustable parameters. In particular, in the case of bubble column reactors, widely
used in chemical, petrochemical, biochemical and metallurgical industries, the design
and scale-up of bubble columns are difficult because of the complexity of the gas and
liquid flow patterns coupled with mass transfer and chemical reactions. Key factors
such as gas hold-up, €, volumetric mass transfer coefficient, k; a, specific interfacial
area, a, bubble size, r3», and kinetic rate constants, k,, and how those parameters are
related is fundamental for the proper design and the operational control of gas-liquid
reactors. On the other hand, the absence of moving parts, their low operating and main-
tenance costs and the excellent mass and heat transfer rates explain the large number
of applications developed with this kind of reactor against the others [7,8]. However,
the pitfall in the use of a theoretical model is to know in advance if its parameters
can be determined uniquely. After solving the identifiability problem one obtain a
model designed to represent theoretical concepts, and to serve as bases for devising
quantitative relations and for predicting properties. In the last years, a great variety of
works have been developed for the identifiability of this kind of chemical models [5]
and [12].

On the other hand, model-based dynamic optimization is used to determine optimal
grade changeover policies. The objective of optimal control process is to determine
the control signals that will cause a process to satisfy the physical constraints and at
the same time minimize (or maximize) some performance criterion. Optimal control
problems can be formulated in terms of a cost functional that is a function of state and
control variables. This problem is usually described by ordinary or partial differential
equation systems describing the paths of the control variables that minimize the cost
functional. However, optimal transition policies should not be implemented without
feedback control, that is, the optimal control can be expressed in feedback form, where
the “feedback gains” satisfy a matrix differential equation of Riccati type. Obtaining
the solution of optimal control problems is an important aspect in the analysis of the
model. This topic has been studied by several authors. In particular, this subject has
been studied in [1] that has a special focus on problems that arise in chemical engi-
neering. In the infinite-time case by using the theory of controllability, the asymptotic
behavior of the controlled system can be studied and a rather complete solution to the
problem is available, see [9] for more details.

In this paper, we shall concentrate on the special structure that appears in a dynamic
gas-liquid reactor, and it is concerned with a study of the optimal feedback control
problem for this reactor. It is clear that, see [9], optimal control theory is intimately
connected no only to system structural properties of controllability and observability
but also to the property that relates to the system response to inputs or disturbances,
the stability. If one want to study the optimal control problem, the system must be
controllable and observable. The goal in optimal control theory is to transfer a system
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from an arbitrary initial state to the origin while minimizing some performance mea-
sure. On the other hand, it is important to note that although practical optimal control
systems that minimize quadratic performance indexes are almost always asymptoti-
cally stable. In the paper, the theory is currently being completed in order to show the
relation of the theory of controllability and observability to the infinite-time quadratic
cost problem.

The paper is organized as follows. Section 2 presents the mathematical model of
a semi-batch GL reactor and the mathematical ground of our work. Section 3 gives
a modification of the initial mathematical model based in a finite difference scheme,
the corresponding identifiability analysis and a detailed explanation of the steps of
our algorithm for the identification. In Sect. 4 we study the structural properties and
the stability of the model. Finally, in Sect. 5 we shall set out our problem in terms of
optimal control.

2 Mathematical model of a semi-batch GL reactor

The classical description of mass transfer processes in gas-liquid reactors makes use of
two spatial-temporal scales which one refers to the physical mass-transfer at the gas-
liquid interface level, i.e. the microscopic model, and the other time scale is referred
to the modelling of the reactor configuration which considers the mixing processes
and the chemicals distribution in the whole volume of the reactor, i.e. the macro-
scopic model. We consider a semi-batch GL reactors, see Fig. 1, where a gas mixture
containing a soluble gas and an inert one, is bubble through the liquid.
In this model we consider the following assumptions:

a) The liquid and the gas bulk are completely mixed.

b) The equation of state of ideal gases and the Henrys law could be applied.

c¢) Initially there is no dissolved gas in the liquid phase but the inert gas flowing
through the liquid column.

d) The macroscopic observable state variables are the mole fraction in the gas phase
and the molar concentration in the bulk liquid phase.

e) The is a rigid liquid film of thickness between the gas and the liquid bulk where
the mass transport is by molecular diffusion. The gas and liquid concentrations at
the interface are always in equilibrium.

f) There is not gas-film resistance for mass-transfer.

g) The microscopic state variables are given by the molar concentration inside the
liquid film, which are not experimentally accessible.

Moreover, in our case, the temperature and pressure are constant. Thus, there are
not chemical reactions.
The mass balance for the gas phase is given as follows.

RT 1 — RT 1 —
dy(®) _ RT ‘r(2 y - y(0) RT1-¢€ - (3CG0D
dt PV € 1—yo 1—y(@) P € 9z =0

ey
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Fig. 1 Representation of the model

with the initial condition y(0) = 0, where yo and y(¢) are the mole fraction of a solu-
ble gas in the gas phase at the reactor inlet and outlet, respectively, R in the universal
gas constant (8.13] K~ 'mol™1), T in the reactor temperature (K), P is the pressure
(atm), V is the volume of the liquid phase in the reactor (m?), € is the reactor gas
hold-up, F; is the inert gas molar flow rate (mol s~1), a is the interfacial specific area
(m~1) and D is the diffusion coefficient of the gas in the liquid film mZs~1). C@)
is the molar concentration in the liquid bulk (mol m—3 ) and U (¢) is the unitary step
function defined as

0r=<o0
Um:[lt;O.

We introduce this function since the system is initially at steady state (y(0) = 0) and
it is perturbed by a step of gas concentration at the inlet of the bubble column.
The unsteady mass balance in the liquid bulk is given by

b
dCP(1) — D (BC(z, t)) )
z=48

dt 0z

with the initial condition C?(0) = 0. Finally, at the quiescent liquid film the mass
transport is described by Fick’s second law with unstationary boundary conditions

9C(z, 1) 32C(z,1)
=D
9z 072

, Yz €0, 8] 3)

with the initial boundary conditions:
t=0 C(z,0)=0
t>0 C@©,1) P (1)
> 1) = —
7’

t>0 C@G, 1) =Clw)
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being & the quiescent liquid film thickness (m) and H the Henry constant
(atm L mol™").

The above model is a complex system which analytical solution cannot be solved
by conventional techniques. In simplifying the problem it is important to focus on
describing the necessary steps to obtain associated system taking account the main
reason why the system exists or is being built. For example, in our model we only
have considered a simplification of the system to reach a semi-numerical solution. The
simplification is based on the transformation of the model using a finite differences
scheme. The process is given in the next section.

Now, in this section we remind some mathematical background that we use along
this work.

The problem of the structural identifiability of the model consists of the determi-
nation of all parameter sets which give the same input-output structure. A character-
ization of structural identifiability is given in [2]. Thus, a continuous-time system is
structurally identifiable if and only if, for almost any two candidates parameter vector
values p, q € P, io(p) = io(q) implies p = q, where io(-) denotes the input-output
behaviour of the system.

Thus structural identifiability analysis is an important step in the modeling process
and it is necessary theoretical prerequisites to experiment design and system identifi-
cation, that is, to estimate the unknown parameters of the model using experimental
data (more information in [3] and [4]).

To determine the input—output behavior (io) of the model we can use the Markov
parameters associated to the continuous-time system.

Optimal control theory is intimately connected to system structural properties of
controllability and observability and to stability. To study the optimal control problem,
the system must be controllable and observable. For that we study this properties.

A system is controllable if and only if the system states can be changed by changing
the system input. That is, a system is controllable, if given two state xo = x(fp) € R”
and xy = x(ty) € R", there exists a time 77, with o < f7 and a control vector u(t)
defined on de interval [, ¢ ¢] which takes the state vector state from xq to x 7.

A system with an initial state is observable if and only if the value of the initial
state can be determined from the system output that has been observed through the
time interval. That is, a system is said to be observable, if there exist a time ¢y, with
fo < ty such that given the vectors u(¢) and y(¢) over the interval [#, 7] it is possible
to deduce the initial state-vector x (fg), see [13] for more details.

In achemical process, when two compartments are in contact, they can achieve equi-
librium points. An equilibrium point of a continuous-time system denoted by x* € R”,
verifies x* = A(p)x*, being A(p) the system matrix of model. An equilibrium point
x* is said to be asymptotically stable if every trajectory starting in a neighborhood of
it is around the x* and converges on x*. The system is asymptotically stable if all the
roots of the characteristic polynomial |s/ — A(p)| have negative real part.

One tool used to check if the system is asymptotically stable is the Routh Hurwitz
stability criterion. Remind that if a,(s) € R[s] is a polynomial of order n with real
coefficients, and

1

an(s) = aps" +ars" + -+ an_15s +an
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then the Routh array is formed by the rows
RO =[r 1§ ri)]
fork =1,...,n+ 1. The first two rows are determined by the coefficients of a; (s)
|:R(l):| _ |:a0 ap aq ]
RO\ " layazas... |
Given rows k — 1 and k, the k + 1-th row, R®tD is obtained by

rl(k)rék—l) B rl(k—l)rék) rl(k)rék—l) _ rfk_l)rgk)
,fk) rfk) Ce

The system is asymptotically stable if all the coefficients of a,, (s) are positive and all
there is not any sign changes in the first column of the Routh array.

3 Identifiability analysis

After the film thickness § is divided in N equal intervals, with the application of the
second-order forward, backward and central differences scheme for the flux term, the
following ODE system is obtained from the previous PDE system given in (1-3)

2
. P1 p3 X1
x1=yp1U@)—aKyxy — N B p5(3x1 —4x2 +x3) —ap ——
P2 p4 K> —x
'<—N2E R, T . =2 4
Xi = 5 (o1 — 2% +xi41) i=2,...,N “)
Py
. N p3 .
XN+l = _5EPS(XN—1 —d4xy +3xn41) i=2,...,N

where the parameters and the constants of the model are defined as

p1=166;p2=H; p3=D; ps=36; ps=a;
Ki= ST Fi e ot Ky = LR

PV yo’ 0 20
a=ﬁ;ﬂ=K3:V= al

K> K, —1

All the initial conditions of the Eq. (4) are set to zero, x; (0) = 0 Vi. Note that x is
the normalized mole fraction at the gas phase outlet and x4 the normalized concen-
tration of the soluble gas in the liquid bulk. They are the two states variables of this
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system of ordinary differential equations which give the macroscopic observable mag-
nitudes of our problem. In summary, x; = y(t)/y9, C* = yoP/H and x; = C;/C*
fori =2,...,N+ 1.

Considering the simplest representation of Eq. (4) with N = 3, the model can be
modeled using the following linear differential equation

x(t) = A(p)x(t) + B(p)u() )
y(t) = Cx(r)

where the state matrix A(p), the perturbation matrix B(p) and the observation matrix
C are given by

wqy — 9p B 15919304 55014344 0
9 3
A(p) = 9618 - 133? ) lzgi 9q(3)
0 _%‘13‘14 64394 —gqm
B® = (rq1000), C=((1) 00 ‘1)) ©

and the parameter vector p, which belongs to a subset of admissible parameters P CR”,
is given by the new parameters:

1—¢€ D
;o= H; a3 = 33 g4 = da.

q1 =

The advantage of the above approximation is that it reduces the complexity of the
system, passing from a partial differential equation to a differential equation and thus
speeds up numerical simulations greatly and simplify the analysis of the identifiability
property. For that, we use the solution of this system given by

t
y(t) = CeAPix(0) + C / AP Bp)u(t)dT
0

and the Markov parameters given by

V(j.p) = CA/(p)B(p), j = 0. (N

Now, we study the identificability of the model (5). In [11] we can see that the
system (4) is not identifiable. But our model treats the variables in different form, so,
we can study the property again.

The parameter identification process for the structured system is followed from the
structure of the vectors obtained in (7). We solve the identification problem for the
system in the next result.
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Proposition The structured system (5) where A(p) and B(p) are defined by (6) with
P € P is structurally identifiable.

Proof We consider two structured systems defined by (6) with p, q € P such that
they have the same input-output behavior (io)
Vik,p)=V(k.q@, k=0

and we shall prove that p = q. By the structure of the Markov parameters (7) we have

Vill,p =Vi(l,q) = q1 =9,
Vl(svp)z V](qu) => qz:qZ’
Vi2,p) =Vi(2, 0 = q394 =439,
V23, p) = V23, @) = 4391 =34s,
Using the two last equations we obtain g4 = g4 and g3 = g3. Hence, p = q and the

system is identifiable. O

Now, we introduce an algorithm to obtain the parameters of our model, using the
Markov parameters technique.

Step 1 Introduce the size of the state vector: n. Introduce the matrices {V (j) =

(w(j)i)i=1,..n, j = 1, ..., n} that determine the known input-output behav-
ior of the process. Introduce «, B and y
v(l)

Step 2 Obtain g1 =

1 2
Step 3 Construct A = g (—qwz _u( )1)

ab, v(D)
Step 4 Construct B = —2v3)»
27q1y )
3 2
Step 5 Construct C = v (U( )1)
101;3(1)18 v(1);
Step 6 Obtain g» = %ﬂ
Step 8 Obtai - =
ep in g3 S0
B
Step 9 Obtain g4 = —
q;3

This algorithm has been implemented in MatLab. Since the parameters of the sys-
tem can be obtained, for simplicity, from now on we ignore the dependence of the
coefficient matrices of the system on p, and they shall be denoted by A and B.

4 Controllability, observability and stability criteria

In this section we check if the system verifies the controllability and observability
properties. We give the next result.
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Proposition Consider the system given in (5) with the matrices (6). This system is
controllable and observable.

Proof We consider the matrices given in (6) and construct the rechability matrix
R = [B AB A’B A3B] . Since rank(R) = 4 = n being n the size of the system.
Then the system (5) is controllable (see [6] for more information). On the other hand,
the system is also observable, since the rank of the observability matrix, [6],

C
rank[CA:|=4=n

is full. O

Finally, in our chemical process, to check if the system is asymptotically stable we
use the Routh—Hurwitz stability criterion. This criterion is a procedure widely used to
study the stability of continuous—and discrete-time linear systems [10]. This method
is able to establish the location of the zeros of a real-coefficient polynomial with
respect to the imaginary axis, without actually solving for the zeros. Thus, the Routh—
Hurwitz stability test must be applied to the characteristic equation of the system. Let
C_ be the open left half plane Real(z) < 0, and deg_(P) the number of zeros of the
characteristic polynomial of the system in C_. The system is asymptotically stable if
deg_(P) = n, where n is the size of the state matrix. The theorem of Routh—-Hurwitz
states that P is stable if and only if H; > O for all k, where Hy is the k-th subresultant
of the polynomials ", p2;iz’ and >, pai+1z’ being py the coefficients of P [14].

If we consider our problem and we apply this criteria to the system (5), we obtain
that all the polynomial coefficients and Hy, are positive for all k. These results guaran-
tee the asymptotic stability of the system. We summarize the last coments in the the
next proposition.

Proposition Consider the system given in (5) with the matrices (6). This system is
asymptotically stable.

5 Optimal control

Optimal control deals with the problem of finding a control for a system such that a
certain optimality criterion is achieved. A control problem includes a cost functional
that is a function of state and control variables. An optimal control is a set of differ-
ential equations describing the paths of the control variables that minimize the cost
functional. The system dynamic is described by a set of linear differential equations
and the cost is described by a quadratic functional. In this case, the solution is provided
by the linear-quadratic regulator (LQR).

We consider the quadratic optimal control problem where the process is an infinite
stage process, that is, where N = oco. As N approaches infinity, the optimal con-
trol solution becomes a steady-state solution and the time-varying gain matrix K (k)
becomes a constant gain matrix written as K. To define an optimal control problem
we also need a cost function. For N = oo, the cost function subject to the linear
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time-invariant first-order system (5) is given by

J =

N =

/ (x(t)T 0x(1) + u(t)’Ru(t)) dt
0

where x(t) is the state, u(¢) is the control and the matrices Q and R are constant and
positive-semidefinite and positive-definite, respectively.
The feedback that minimizes the cost function has the form

ut)=—-Kxt)=—-R'BTPx(1),

where P is the solution of the differential Riccati equation. The differential Riccati
equation is given as

PA+ATP —(PBRT'(BTP)+ Q0 =0.

In optimal control matrices Q and R affect directly the values of the system signals
x(t) and u(t). It is known that one variable is optimized if the matrix coefficients
corresponding to this variable are higher. So, depends the value of the variables, the
matrices Q and R are different.

We can interpret the cost criterion as follows. Since Q is positive semidefinite, that
is, xT (t)Qx(¢) > 0 and represents the penalty incurred at time ¢ for state trajecto-
ries which deviate from 0. Similarly, since R is positive definite, u” (t)Ru(t) > 0
unless u(¢) = 0 and it represents the control effort at time ¢ in trying to regulate
x(t) to 0. The admissible control requirement ensures that state regulation occurs as
t — oo. The choice of the weighting matrices Q and R reflects the tradeoff between
the requirements of regulating the state to 0 and the expenditure of control energy.

Generally, the matrix R is the identity matrix and the matrix Q = [¢;]7_, is a
diagonal matrix where the relative sizes of g; indicate the relative importance that the
designer attaches to x; (¢) being away from 0. The relationship between these matrices
is given, for example, as follows:

a) If the matrix R increases, gains decrease and the energy control cost decreases.
But with large values of the matrix R, the behaviour of the system can worsen.

b) If R > Q, the contribution of the control u(¢) is very large compared with the
contribution of the state x(¢). That is, the cost decreases but the behaviour of the
system worsens.

c) If O > R, the system response improves but the energy control cost increases.
The state vector x (¢) will be very controlled, but control signals u(#) can be very
large.

Since our model satisfies the structural properties of controllability and observabil-
ity and the stability property, then the optimal control problem can be solved. Using
the obtained solution, the relationship between the stability of the initial system and
the closed loop system can be analyzed. Note that the choice of weighting matrices can
improve system performance but with an increase of the energy control cost. These
results are then applied to some examples.
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5.1 Numerical results

Consider the system (5), (6) with the following values of the parameters [11]: g; = 49,
g>» = 100atm L mol ™!, g3 = 50.0000s !, g4 = 1073.
This system is asymptotically stable and the eigenvalues are

E =[-1350.800696 —451.442142 — 1.958178 — 0.034606].

If the weighting matrices are R = I4 and Q = I4, using Matlab programm, we
obtain the following results:

e the time-varying gain matrix K is given by
K =10.528512 0.003104 0.001580 0.752653],
e the matrix P that solves the differential Riccati equation is given by

0.351923 0.002280 0.001161 0.552968
0.002280 0.000752 0.000376 0.004845
0.001161 0.000376 0.000745 0.007710 |’
0.552968 0.004845 0.007710 16.383734

P:

e and the generalized eigenvalues are
E = [—1350.800658 —451.441137 —2.587221 —0.058590].

Note that if one entry of the matrix Q is changed, this fact influences in the stability

of the system. For example, if O =

[ K = [0.528513 0.003620 0.002661 3.364584]

0.388294 0.002660 0.001955 2.471933
0.002660 0.000756 0.000384  0.025264
0.001955 0.000384 0.000763  0.050981
2.471933 0.025264 0.050981 121.249981

P =

E =[—1350.800658 —451.441137 —2.581692 — 0.128501]

Note that in this case g4 has more importance that the rest of the entries of the matrix
0. As O > R the system response improves, that is the stability is better, but the
energy control cost increases, since the values of K increase.
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1 00 O
If consider Q = 8 (]) (1) g , then
0 0 0 200

K =10.693927 0.005401 0.006459 12.577753]

0.509822 0.003968 0.004745 9.240617
0.003968 0.000771 0.000416 0.101627
0.004745 0.000416 0.000832 0.218944
9.240617 0.101627 0.218944 530.789659

E =[—1350.800658 —451.441137 —2.560092 —0.3782482]

Since the value of g4 is greater that in the before case, the results are more significant.
We summarize the results. If we increase the gain, the pole moves away from the
imaginary axis and improves system stability, but the cost of control increases.

6 Conclusions

In this paper we study a control design methodology based on optimization applied to
a semi-batch GL reactor with unknown parameters. For that, we modelled the semi-
batch GL reactor using control theory and we study the identifiability property. In
this case we construct an algorithm to obtain the unknown parameters. Moreover we
check if the system associated to the model verifies the properties of controllability,
observability and stability. These properties are fundamental in the control optimal
study.

On the other hand, control design objectives are formulated in terms of a cost cri-
terion. The optimal control law is the one which minimizes the cost criterion. One
of the most remarkable results in linear control theory and design is that if the cost
criterion is quadratic, and the optimization is over an infinite horizon, the resulting
optimal control law has many nice properties, including that of closed loop stability.
Thus, we study this property obtaining interesting results.
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